STEREOCHEMISTRY ABSTRACTS

R. López and J.C. Carretero

Tetrahedron Asymmetry 1991, 2, 93

tBuSO2

C12H18O3S

(S)_S-tert-Butylsulfonyl-ptolylsulfinylmethane E.e. $\geq 98\%$ [by ¹H NMR with Yb(hfc)₃] [\propto]²⁰_D = +142 (c=1, CHCl₃)

Source of chirality: synthesis from (-)-menthyl (S)_c-p-toluenesulfinate

Absolute configuration inferred from the method of synthesis (Andersen reaction)

R. López and J.C. Carretero

Tetrahedron Asymmetry 1991, 2, 93

C13H18O3S

E.e. $\geqslant 98\%$ (by ¹H NMR of a precursor) $[\alpha]_D^{20} = +25$ (c=1, CHCl₃)

Absolute configuration S

 $(S)_{S}$ -1-tert-Buty1sulfony1-1-p-toly1sulfinylethene

R. López and J.C. Carretero

Tetrahedron Asymmetry 1991, 2, 93

 $C_{18}H_{24}O_{3}S_{2}$

E.e. \geqslant 80% [by ¹H NMR with Yb(hfc)₃]

 $[\propto]_D = +64 (c=1, CHCl_3)$

Absolute configuration R_1 , R_2 , R_4 , S_8 (assigned by correlation with (+)-(1R,4R)-dehydronorcamphor and by mechanistic considerations)

2-tert-Butylsulfonyl-2-p-tolylsulfinyl-5-norbornene

R. López and J.C. Carretero

Tetrahedron Asymmetry 1991, 2, 93

C11H16O2S

E.e. $\geqslant 80\%$ [by ¹H NMR with Yb(hfc)₃] $[\alpha]_D^{20} = +98$ (c=1, CHCl₃)

Absolute configuration 1R,4S (assigned by correlation of a precursor to (+)-(1R,4R)-dehydronorcamphor)

(1R, 4S)-2-tert-Buty1sulfony1-2,5-norbornadiene

K. Soai and M. Watanabe

Tetrahedron Asymmetry 1991, 2, 97

E.e. = Not determined (probably 100%)

 $\{\alpha\}^{24}_{D}$ -12 86 (<u>c</u> 5.0, CHCl₃)

Source of chirality: (1S, 2R)-norephedrine

Absolute configuration 15, 2R

C20H27NO

N-benzyl-N-butylnorephedrine

K. Soai and M Watanabe

Tetrahedron Asymmetry 1991, 2, 97

E.e. = Not determined (probably 100%)

H [α]²⁴_D -7.71 (<u>c</u> 1.5, CHCl₃) OH contact

Source of chirality: (15, 2R)-norephedrine

Absolute configuration 1S, 2R

C24H35NO2

N-(4-benzyloxybutyl)-N-butylnorephedrine

K Soai and M Watanabe

Tetrahedron Asymmetry 1991, 2, 97

E.e = Not determined (probably 100%)

 $[\alpha]^{20}$ D -10.84 (<u>c</u> 2.0, CHCl₃)

Source of chirality: $(1\underline{S}, 2\underline{R})$ -norephedrine

Absolute configuration 15, 2R

N-(6-benzyloxyhexyl)-N-butylnorephedrine

K. Soai and M. Watanabe

Tetrahedron. Asymmetry 1991, 2, 97

E.e. = Not determined (probably 100%)

 $[\alpha]^{25}_{D}$ -7.42 (<u>c</u> 2.1, CHCl₃)

Source of chirality: (1S, 2R)-norephedrine

Absolute configuration 1S, 2R

N-(12-benzyloxydodecyl)-N-butylnorephedrine

K. Soai and M. Watanabe

Tetrahedron. Asymmetry 1991, 2, 97

E.e. = Not determined (probably 100%)

 $[\alpha]^{25}_{p}$ -1.01 (<u>c</u> 2.3, CHCl₃)

Source of chirality: (1R, 2S)-ephedrine

Absolute configuration 1R, 2S

C21H29NO2

N-(4-benzyloxybutyl)ephedrine

K. Soai and M. Watanabe

Tetrahedron: Asymmetry 1991, 2, 97

E.e = Not determined (probably 100%)

 $[\alpha]^{25}_{D}$ -2 72 (<u>c</u> 2.0, CHCl₃)

Source of chirality: (1 \underline{R} , 2 \underline{S})-ephedrine

Absolute configuration 1R, 2S

C23H33NO2

N-(4-benzyloxyhexyl)ephedrine

K. Soai and M. Watanabe

Tetrahedron. Asymmetry 1991, 2, 97

E.e. = Not determined (probably 100%)

 $[\alpha]^{20}$ -2 90 (<u>c</u> 2.1, CHCl₃)

Source of chirality: $(1\underline{R}, 2\underline{S})$ -ephedrine

Absolute configuration 1R, 2S

C29H45NO2

N-(12-benzyloxydodecyl)ephedrine

K. Soai and M. Watanabe

Tetrahedron Asymmetry 1991, 2, 97

E.e. = Not determined (probably 100%)

 $\left[\alpha\right]_D$ not measured because of insolubility Source of chirality: $(1\underline{S},\ 2\underline{R})$ -norephedrine Absolute configuration $1\underline{S},\ 2\underline{R}$

polymeric compound

 \underline{N} -butyl- \underline{N} -(6-polystyrylmethoxyhexyl)norephedrine

George R Negrete and Joseph P Konopelski

Tetrahedron Asymmetry 1991, 2, 105

ee = >99% (by GC and NMR of derivative)

 $[\alpha]_D = +434 (c = 1.7, EtOAc)$

Source of chirality (S)-asparagine

absolute configuration S

 $C_{10}H_{16}O_3N_2$

(S)-1N-Carbomethoxy-2-tert-butyl-2,3-dihydro-4(1H)-pyrimidinone

George R Negrete and Joseph P Konopelski

Tetrahedron Asymmetry 1991, 2, 105

de = 94%, 98% after chromatography (by GC and NMR)

 $[\alpha]_D = +138 (c = 563, CH_2Cl_2)$

Source of chirality (S)-asparagine

absolute configuration 2R, S at 3N acyl group

 $C_{15}H_{24}O_4N_2$

(2R)-1N-Carbomethoxy-3N-[(S)-2-methylbutyryl]-2-*tert*-butyl-2,3-dihydro-4(1H)-pyrimidinone

George R Negrete and Joseph P Konopelski

Tetrahedron Asymmetry 1991, 2, 105

de = 98%, 96% after chromatography (by GC and NMR)

 $[\alpha]_D = +257 \ (c = 1\ 05, CH_2Cl_2)$

Source of chirality (S)-asparagine

absolute configuration 2R, S at 3N acyl group

 $C_{16}H_{24}O_4N_2$

 $(2R)\hbox{-}1N\hbox{-}Carbomethoxy\hbox{-}3N\hbox{-}[(S)\hbox{-}2\hbox{-}methyl\hbox{-}4\hbox{-}pentenoyl]\hbox{-}2\hbox{-}tert\hbox{-}butyl\hbox{-}4$

2,3-dihydro-4(1H)-pyrimidinone

George R Negrete and Joseph P Konopelski

Tetrahedron Asymmetry 1991, 2, 105

de = 98%; >99% after chromatography (by GC and NMR)

 $[\alpha]_D = +152 (c = 1 55, CH_2Cl_2)$

Source of chirality (S)-asparagine

absolute configuration 2R, S at 3N acyl group

C₁₆H₂₂O₄N₂

 $(2R)\text{-}1N\text{-}Carbomethoxy-3N\text{-}[(S)\text{-}2\text{-}methyl\text{-}4\text{-}pentynoyl]\text{-}2\text{-}tert\text{-}butyl\text{-}4\text{-}pentynoyl]\text{-}2\text{-}tert\text{-}2\text{-}butyl\text{-}2\text{-}pentynoyl]\text{-}2\text{-}tert\text{-}2\text{-}butyl\text{-}2\text{$

2,3-dihydro-4(1H)-pyrimidinone

George R Negrete and Joseph P Konopelski

Tetrahedron Asymmetry 1991, 2, 105

de = 98%, >99% after chromatography (by GC and NMR)

 $[\alpha]_D = +210 (c = 1.81, CH_2Cl_2)$

Source of chirality (S)-asparagine

absolute configuration 2R. S at 3N acvl group

C20H26O4N2

(2R)-1N-Carbomethoxy-3N-I(S)-2-methyl-3-phenylpropionyll-2-tert-butyl-

2,3-dihydro-4(1H)-pyrimidinone

George R Negrete and Joseph P Konopelski

Tetrahedron Asymmetry 1991, 2, 105

de = 86%, 98% after chromatography (by GC and NMR)

 $[\alpha]_D = +86 \text{ 4 (c} = 2 \text{ 36, CH}_2\text{Cl}_2)$

Source of chirality (S)-asparagine

absolute configuration 2R, R at 3N acyl group

C15H24O4N2

 $(2R)\hbox{-}1N\hbox{-}Carbomethoxy\hbox{-}3N\hbox{-}[(R)\hbox{-}2\hbox{-}methylbutyryl]\hbox{-}2\hbox{-}tert\hbox{-}butyl-$

2,3-dihydro-4(1H)-pyrimidinone

George R Negrete and Joseph P Konopelski

Tetrahedron Asymmetry 1991, 2, 105

de = 96%, 96% after chromatography (by GC and NMR)

 $[\alpha]_D = +81 \ 9 \ (c = 0 \ 89, CH_2Cl_2)$

Source of chirality (S)-asparagine

absolute configuration 2R, S at 3N acyl group

C₁₇H₂₆O₄N₂

(2R)-1N-Carbomethoxy-3N-[(S)-2-ethyl-4-pentenoyl]-2-tert-butyl-

2,3-dihydro-4(1H)-pyrimidinone

George R Negrete and Joseph P Konopelski

Tetrahedron Asymmetry 1991, 2, 105

de = 98%, >99% after chromatography (by GC and NMR)

 $[\alpha]_D = +99 \ 9 \ (c = 1 \ 95, CH_2Cl_2)$

Source of chirality (S)-asparagine

absolute configuration 2R, S at 3N acyl group

C₁₇H₂₄O₄N₂

 $(2R)\hbox{-}1N\hbox{-}Carbomethoxy\hbox{-}3N\hbox{-}[(S)\hbox{-}2\hbox{-}ethyl\hbox{-}4\hbox{-}pentynoyl]\hbox{-}2\hbox{-}tert\hbox{-}butyl\hbox{-}$

2,3-dihydro-4(1H)-pyrimidinone

George R Negrete and Joseph P Konopelski

Tetrahedron Asymmetry 1991, 2, 105

de = 98%, >99% after chromatography (by GC and NMR)

 $[\alpha]_D = +141 \ (c = 3 \ 44, CH_2Cl_2)$

Source of chirality (S)-asparagine

absolute configuration 2R, S at 3N acyl group

 $C_{21}H_{28}O_4N_2$

(2R)-1N-Carbomethoxy-3N-[(S)-2-benzybutyryl]-2-tert-butyl-

2,3-dıhydro-4(1H)-pyrımıdınone

J F. G A. Jansen, C Jansen, B L Feringa

Tetrahedron Asymmetry 1991, 2, 109

R₂=CH₃ e e 100%, d e. 100% by NMR source of chirality: synthesis from (-)-menthol absolute configuration 4R, 5R assigned by correlation with X-ray analysis and NMR NOE studies

J F G A. Jansen, C Jansen, B. L Feringa

Tetrahedron Asymmetry 1991, 2, 109

R₂=Ph e e 100%, d.e. 100% by NMR source of chirality synthesis from (-)-menthol absolute configuration 4R, 5R assigned by correlation with X-ray analysis and NMR NOE studies

J F G A. Jansen, C. Jansen, B L Feringa

Tetrahedron Asymmetry 1991, 2, 109

 $R_2{=}CH_3$ e.e 100%, d e 100% by NMR source of chirality: synthesis from (-)-menthol absolute configuration 4R, 5R assigned by correlation with X-ray analysis and NMR NOE studies

J F G A. Jansen, C. Jansen, B. L Feringa

Tetrahedron Asymmetry 1991, 2, 109

R₂=Ph e e 100%, d e. 100% by NMR source of chirality synthesis from (-)-menthol absolute configuration 4R, 5R assigned by correlation with X-ray analysis and NMR NOE studies

J F G A Jansen, C. Jansen, B L Feringa

Tetrahedron Asymmetry 1991, 2, 109

R₂=CH₃, R₃=CH₃ e e 100%, d e 100% by NMR source of chirality synthesis from (-)-menthol absolute configuration 4R, 5R assigned by correlation with X-ray analysis and NMR NOE studies

J F. G A. Jansen, C. Jansen, B L Feringa

Tetrahedron Asymmetry 1991, 2, 109

R₂=Ph, R₃=CH₃ e.e 100%, d.e 100% by NMR source of chirality: synthesis from (-)-menthol absolute configuration 4R, 5R assigned by correlation with X-ray analysis and NMR NOE studies

J F G A Jansen, C. Jansen, B L Feringa

Tetrahedron Asymmetry 1991, 2, 109

R₂=CH₃, R₃=CH₃ e.e 100%, d.e. 100% by NMR source of chirality: synthesis from (-)-menthol absolute configuration 4R, 5R assigned by correlation with X-ray analysis and NMR NOE studies

J F. G. A. Jansen, C. Jansen, B L. Feringa

Tetrahedron Asymmetry 1991, 2, 109

$$0 = \begin{bmatrix} 3 & 4 & R_2 \\ & & & \\ & & & \\ R_3 & & & \\ & &$$

R₂=Ph, R₃=CH₃ e.e 100%, d e. 100% by NMR source of chirality synthesis from (-)-menthol absolute configuration 4R, 5R assigned by correlation with X-ray analysis and NMR NOE studies

J F. G A Jansen, C Jansen, B L Feringa

Tetrahedron Asymmetry 1991, 2, 109

R₂=R₃_(CH₃O)₂C₆H₃ e.e 100%, d.e 100% by NMR source of chirality. synthesis from (-)-menthol absolute configuration 4R, 5R assigned by correlation with X-ray analysis and NMR NOE studies

J F G. A. Jansen, C Jansen, B L Feringa

Tetrahedron Asymmetry 1991, 2, 109

R₂=R₃_(CH₃O)₂C₆H₃ e.e 100%, de. 100% by NMR source of chirality: synthesis from (-)-menthol absolute configuration 4R, 5R assigned by correlation with X-ray analysis and NMR NOE studies

J F G A. Jansen, C. Jansen, B L Feringa

Tetrahedron Asymmetry 1991, 2, 109

Ar= 3-benzyloxy-4-methoxy-benzene e.e 100%, d.e. 100% by NMR $\left[\alpha\right]_D^{RT}$ -98 0 (c=0.6 CHCl₃) source of chrality: synthesis from (-)-menthol absolute configuration 4R, 5R assigned by correlation with X-ray analysis and NMR NOE studies

M Saiah, M Bessodes* and K Antonakis

Tetrahedron Asymmetry 1991, 2, 111

[\alpha]^{20}D=-21 (c 0 17, H₂O), ee= 100% Source of chirality Sharpless kinetic resolution of allylic alcohols Starting material isovaleraldehyde

C₈H₁₇NO₃

(3S, 4S)-4-amino-3-hydroxy-6-methyl-heptanoic acid (statine)

Thaddeus R Nieduzak and Alexey L Margolin

Tetrahedron Asymmetry 1991, 2, 113

E e \geq 97% (¹⁹F NMR of α-methoxy-α-trifluoromethylphenyl acetate ester) [α]_D²⁰ = -41 0 (c=1 30,CHCl₃)

Source of chirality enzymatic resolution

Absolute configuration S (¹H NMR of O-methylmandelate ester)

C₈H₉FO

S-(-)-1-(4-Fluorophenyl)ethanol

Tetrahedron Asymmetry 1991, 2, 113

Thaddeus R Nieduzak and Alexey L Margolin

E e \geq 97% (¹⁹F NMR of α-methoxy-α-trifluoromethylphenyl acetate ester of precursor) $[\alpha]_D^{20} = -17.8$ (c=1.07,CHCl₃)

Source of chirality enzymatic resolution

Absolute configuration R (¹H NMR of O-methylmandelate ester of precursor)

C₈H₇FO

R-(-)-4-Fluorostyreneoxide

Tetrahedron. Asymmetry 1991, 2, 113

Thaddeus R Nieduzak and Alexey L Margolin

 $[\alpha]_D^{20} = -51 \text{ 0 (c=0 90,CHCl}_3)$

Source of chirality enzymatic resolution

Absolute configuration R (¹H NMR of O-methylmandelate ester)

CaHaCIFO

R-(-)-2-Chloro-(4-fluorophenyl)ethanol

Tetrahedron Asymmetry 1991, 2, 113

Thaddeus R Nieduzak and Alexey L Margolin

E e \geq 97% (¹⁹F NMR of α-methoxy-α-trifluoromethylphenyl acetate ester of precursor) $[\alpha]_{n}^{20} = -12.0$ (c=1.0,CH₃OH)

Source of chirality enzymatic resolution

Absolute configuration S (¹H NMR of O-methylmandelate ester of precursor)

mp = 141-145 °C

C12H16FNO

S-(-)-(4-Fluorophenyl)hydroxymethyl-piperidine

Thaddeus R Nieduzak and Alexev L Margolin

Tetrahedron Asymmetry 1991, 2, 113

E e \geq 97% (¹⁹F NMR of α-methoxy-α-trifluoromethylphenyl acetate ester of precursors) $[\alpha]_{D}^{20} = -22.2$ (c=0 33.CHCl₃)

Source of chirality enzymatic resolution

Absolute configuration R,R (¹H NMR of O-methylmandelate ester of precursors)

mp = 133-136 °C

C₂₀H₂₃F₂NO₂

(-)-1-[(R)-2-(4-Fluorophenyl)-2hydroxyethyl]-4-[(R)-(4-fluorophenyl)hydroxymethyl]-piperidine

Thaddeus R Nieduzak and Alexey L Margolin

Tetrahedron Asymmetry 1991, 2, 113

E e \geq 97% (¹⁹F NMR of α-methoxy-α-trifluoromethylphenyl acetate ester of precursors) [$\alpha_{1n}^{20} = -69.7$ (c=0.80,CHCl₃)

Source of chirality enzymatic resolution

Absolute configuration R,S (¹H NMR of O-methylmandelate ester of precursors)

mp = 135-139 °C

C20H23F2NO2

(-)-1-[(R)-2-(4-Fluorophenyl)-2-hydroxyethyl]-4-[(S)-(4-fluorophenyl)hydroxymethyl]-piperidine

G Rosini,* E Marotta, A Raimondi, and P Righi

Tetrahedron Asymmetry 1991, 2, 123

mp 91-93°C

 $[\alpha]_D^{26}$ +103 59 (c 2 138, CHCl₃)

 $C_{21}H_{29}NO_4S$

(1S,2R,5S)-(+)-2,5-Dimethylbicyclo[3 2.0]heptan-endo-2-yl

(2R)-1-(4-toluenesulphonyl)pyrrolidine-2-carboxylate

G Rosini,* E Marotta, A.Raimondi, and P Righi

Tetrahedron Asymmetry 1991, 2, 123

mp 74-76°C [α]²⁶ -43 80 (c 2 180, CHCl₃)

C₂₁H₂₉NO₄S (1S,2R,5S)-(-)-2,5-Dimethylbicyclo[3 2 0]heptan-endo-2-yl (2S)-1-(4-toluenesulphonyl)pyrrolidine-2-carboxylate

G Rosini,* E Marotta, A Raimondi, and P Righi

Tetrahedron Asymmetry 1991, 2, 123

bp 115-120°C/22mmHg (kugelrohr air-bath temperature)

 $[\alpha]_D^{26}$ -15 66 (d 0 865)

Ee ≥ 98%

Source of chirality (3R)-(-)-linalool (e e \geq 98%) as starting material

C₉H₁₆O

(3R)-(-)-3,6-Dimethylhepta-1,6-dien-3-ol

G.Rosini,* E Marotta, A Raimondi, and P Righi

Tetrahedron Asymmetry 1991, 2, 123

mp 56-57°C, $[\alpha]_D^{26}$ +26 40 (c 1 628, methanol)

Source of chirality (3R)-(-)-linalool (e e \geq 98%) as starting material

C₉H₁₆O

(1S,2R,5S)-(+)-2,5-Dimethylbicyclo[3 2 0]heptan-endo-2-ol

Absolute configuration assigned according to lit (cf. lit. G Rosini et al. Tetrahedron Asymmetry 1990, 1, 751)

LA. Bromley, SG. Davies and CL Goodfellow

Tetrahedron Asymmetry 1991, 2, 139

C₁₀H₁₄O₂

1-(o-Anisyl)propanol

e e = >99 5% (by nmr of Mosher's ester) $[\alpha]_D^{20}$ = -57 (c 1 02 in toluene) Source of chirality asymmetric synthesis Absolute configuration: S

L.A. Bromley, S.G. Davies and C.L. Goodfellow

Tetrahedron: Asymmetry 1991, 2, 139

 $C_{14}H_{14}O_{2}$

e.e. = >99.5% (by nmr of Cr(CO)₃ complexed precursor)

 $[\alpha]_D^{20} = -34 \text{ (c 1.2 in CHCl}_3)$

Source of chirality: asymmetric synthesis

Absolute configuration: S

α-Phenyl-2-methoxybenzyl alcohol

L.A. Bromley, S.G. Davies and C.L. Goodfellow

Tetrahedron: Asymmetry 1991, 2, 139

Cr (CO)₃

C₁₆H₁₉CrNO₅

tricarbonyl(η^6 -o-anisaldehyde)chromium(0)

e.e. = >99.5% (by nmr of L-valinol derived imine) $[\alpha]_D^{23}$ = +1016 (c 0.06 in CHCl₃)

Source of chirality: kinetic resolution

Absolute configuration S

(assigned by X-ray of L-valinol derived imine)

L.A. Bromley, S.G. Davies and C.L. Goodfellow

Tetrahedron: Asymmetry 1991, 2, 139

OMe OMe

 $C_9H_{12}O_2$

o-Methoxy-1-phenethanol

e.e. = >99.5% (by nmr of Mosher's ester)

 $[\alpha]_D^{20}$ -59 (c 1 18 in toluene)

Source of chirality: asymmetric synthesis

Absolute configuration: S

(by X-ray of Cr(CO)₃ complex of O-Me deriv.)

A. Boussoufi, P. Hudhomme, P. Hitchcock and G. Duguay*

Tetrahedron: Asymmetry 1991, 2, 157

O OMe V_2 CO_2Me $CO_2R* = CO_2CH(Me)-CO_2Et$ CO_2Me $CO_2R* = CO_2CH(Me)-CO_2Et$

[2-R-(S ethyl lactate)] 2-methoxy-2-(2'-thiazinyl)glycinate

Source of chirality: (-)-(S)-Ethyl lactate

 $[\alpha]_D^{20} \sim 5.1 \text{ (c = 1.37 ; CHCl}_3)$

Absolute configuration: 2 R-(S ethyl lactate)]

(assigned by X-Ray)